ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'CodigoInstitucion'. [20018] (severity 16) [SELECT PublicObrasAutores.NumeroEmpleado, PublicObrasAutores.ApellidoPaterno, PublicObrasAutores.ApellidoMaterno, PublicObrasAutores.Nombre, PublicObrasAutores.NombreCompleto FROM PublicObrasAutores LEFT JOIN PublicObrasAutoresFil ON PublicObrasAutores.RefPublicacion = PublicObrasAutoresFil.RefPublicacion WHERE PublicObrasAutores.RefPublicacion = '693016' AND PublicObrasAutores.NumeroEmpleado IS NULL AND PublicObrasAutoresFil.CodigoInstitucion IS NOT NULL;]
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'CodigoInstitucion'. [20018] (severity 16) [SELECT PublicObrasAutores.NumeroEmpleado, PublicObrasAutores.ApellidoPaterno, PublicObrasAutores.ApellidoMaterno, PublicObrasAutores.Nombre, PublicObrasAutores.NombreCompleto FROM PublicObrasAutores LEFT JOIN PublicObrasAutoresFil ON PublicObrasAutores.RefPublicacion = PublicObrasAutoresFil.RefPublicacion WHERE PublicObrasAutores.RefPublicacion = '693016' AND PublicObrasAutores.NumeroEmpleado IS NULL AND PublicObrasAutoresFil.CodigoInstitucion IS NULL;]
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'Institucion'. [20018] (severity 16) [SELECT Institucion FROM PublicObrasAutoresFil WHERE RefPublicacion = '693016']
®
ERROR:SQLSTATE[HY000]: General error: 20018 Invalid column name 'Institucion'. [20018] (severity 16) [SELECT Institucion FROM PublicObrasAutoresFil WHERE RefPublicacion = 693016 AND InstitucionPropia = 'S'
UNION
SELECT Adscripciones.Entidad FROM PublicacionesObras
JOIN PublicObrasAutores ON PublicacionesObras.Identificador = PublicObrasAutores.RefPublicacion
JOIN Adscripciones ON PublicObrasAutores.NumeroEmpleado = Adscripciones.NumeroEmpleado
WHERE (PublicacionesObras.FechaPublicacion BETWEEN Adscripciones.FechaDesde AND Adscripciones.FechaHasta OR (PublicacionesObras.FechaPublicacion >= Adscripciones.FechaDesde AND Adscripciones.FechaHasta IS NULL)) AND PublicacionesObras.Identificador= 693016]
SIIA Público
SISTEMA INTEGRAL DE INFORMACIÓN ACADÉMICA - PÚBLICO
Título del libro: Ieee International Symposium On Biomedical Imaging, Isbi 2024 Título del capítulo: IN-SILICO TRAINED AI FOR ENHANCED T2 SPECTRUM IMAGING AND MYELIN WATER FRACTION MAPPING IN PRECLINICAL 7T MRI
In-silico; Machine learning; Brain; MRI; Myelin water imaging; Pre-clinical data
Resumen:
This study introduces a Machine Learning (ML) approach for estimating the T-2 spectrum and myelin water fraction (MWF) using multi-echo T-2 (MET2) data from preclinical 7T Magnetic Resonance Imaging (MRI) scanners. ML methods have shown promise in MWF estimation, outperforming Regularized Non-Negative Least Squares (RNNLS). However, existing ML methods were optimized for high signal-to-noise ratios (SNR) typical of 3T clinical MET2 data with larger voxel sizes. We adapted the Model-Informed Machine Learning (MIML) method to handle challenges in preclinical 7T MRI, including reduced voxel sizes, elevated noise levels (SNR=30-60), and shifts in T-2 lobes. Results from in-silico simulated data demonstrate the superior performance of the proposed multi-layer-perceptron-based solution over RNNLS. Validation with MET2 data from two mice-a healthy control and a cuprizone-exposed pathological mouse-confirms the ML method's success in identifying cuprizone-induced demyelination. Our study showcases the adaptability and enhanced performance of the MIML approach under challenging preclinical 7T MRI conditions, contributing to the advancement of MWF estimation methods in high-field MRI settings.